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The amphidinolides are a family of important biologically
active macrolides isolated from the marine dinoflagellate-
phidinium sp., a symbiotic microalga found in the Okinawan
flatworm Amphiscolopssp! The amphidinolides have shown
extraordinary activity against a variety of NCI tumor cell lines.
However, the fact that there are extremely limited quantities has
slowed the pace of biological studies and, in many cases,

hampered progress toward complete structural assignments of

these unusual macrolidésnterestingly, this family of metabolites
exhibits remarkable structural diversity with twenty-one reported
examples of amphidinolides A through S, illustrative of macro-
cycle formation ranging from twelve-membered to twenty-seven
membered systents.Amphidinolide J () was the first of the

o
HaC

1 (Amphidinolide J)

family in which the relative and absolute stereochemistries were
defined* Very recently, isomeric amphidinolide R was discov-
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face addition to the bis-chelatsgins-cis conformer of4. Further
conversions to homoallylic iodid2proceeded in excellent overall
yield.

Coupling reactions for stereocontrolled formation of FR€;—
C; alkene were undertaken using tBevinyl iodide 10 (Scheme
2). The production ofLO utilized the base-induced elimination
of the chloro-epoxid®, which was accessible from the Sharpless
asymmetric epoxidation product® Hydrozirconation of9
ensured formation of the desired alkebh@ via synaddition!
Unfortunately, attempted alkylations of the alkenyllithium or

ered as the 14-membered macrolactone formed from esterificationcuprate intermediates derived frab® promoted facile elimina-

of the C-13 hydroxyl of a common seco acid leadind.foHerein
we report the total synthesis ofJ-amphidinolide J1), and thus
communicate the first successful route for total synthesis of a
macrolide of the amphidinolide family.

Our convergent, stereocontrolled synthesid efas executed
from three subunits which were fashioned from considerations
of disconnections of C-O (lactonization), 6-C;, and G,—Cy3

tions of iodide2 to its corresponding diene. The problem was
overcome by formation of the stable homoallylic zinc reagent
(Scheme 1). This novel, well-behaved alkylzinc displayed no
products of dimerization, cyclopropylcarbinyl tautomerism, or
p-elimination (formation from2; ‘BuLi (2 equiv), THF at—78

°C; then ZnC} (1 equiv),—78 °C — rt).1213 Application of the
Negishi protocdP for palladium-catalyzed reaction @&a with

bonding. Current studies in our laboratories have explored recent10was highly successful. In this fashion, palladium coupling of
advances in organozinc chemistry as a significant developmentthe functionalized homoallylzinc species forged a versatile and

for the preparation of these functionalized macrolactones.

As illustrated in Scheme 1, the first component, optically active
iodide 2, was prepared via the conjugate addition of the
Yamamoto organocopper speéiésderived from the vinyl
bromide 3.8 Low-temperature addition to theS)t4-phenyIN-
enoyloxazolidinond?® produced the imidé ([a]?% +31.1 € 7.75,
CHCl)) in 95% yield with complete diastereoselectivity. Asym-
metric induction at C-32) can be attributed to the exclusive-
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for the two-step oxidation-olefination procedure as a 15:1 ratio
of E/Z-isomers with no evidence of epimerization of the C-10
stereocenter.

As illustrated in Scheme 3, the optically active 2-methyl-1,3,4-
butanetriol derivativel 3'¢ served as a precursor to aldehyte
for incorporation of the —C,, segment. Oxidation ofil3
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Finally, macrocyclization was achieved in 63% yield by the
Yamaguchi procedur¥. In situ generation of the mixed anhy-
dride (2,4,6-trichlorobenzoyl chlorid®?r,NEt, DMAP, CH,Cl,)

produced an aldehyde which suffered partial epimerization upon at 22 °C under high dilution conditions (0.0006 M for 18 h)

flash chromatography. To avoid this problem, dilution of crude
oxidation mixtures with hexanes and filtration afforded product
which could be used directly in the subsequent Takai redétion
to 14 (E/Z ratio 19:1). Palladium-catalyzed coupling bf with
n-propylzinc chloridé? led to desired aldehyd&5. Studies to
join 15and the alkenyllithiumi2b (Scheme 2:'BuLi (2.2 equiv),
THF at —78 °C) gave poor yields of the diastereomeric C-13
alcohols (1:1 ratio). However, conversion to dimethylalkenyl-
zincate12c (12b; then MeZn (1.5 equiv)) provided exclusive
formation of16. Although the nucleophilic behavior of similar
mixed zincates is generally not well characteriz&the reaction
proceeded with selective transfer of thealkenyl groupt®

producing the stereochemical result of a chelation-controlled

model. Standard operations led to intermediate aldetydand
the noteworthy DDQ deprotection df7 to the C-14 hydroxy-
aldehydel8 permitted selective sodium chlorite oxidation to seco-
acid 19.

(16) Alcohol 13 was prepared fromR 3R-4-(tert-butyldiphenylsilyloxy)-
3-methyl-1,2-butanediol with appropriate protecting groups via slight modi-

fication of the previously reported four-step pathway; see ref 10. Also: Jass,

P. A.; Ph.D. Thesis, Indiana University, 1994.
(17) To our knowledge, this appears to be the first description of a mixed

yielded the fifteen-membered macrolactone]ffy +76.1° (c
1.00, CHC})). Removal of the C-9 allylic SEM ether was
accomplished with mildly acidic conditions (PPTBUOH, reflux),

and transesterification (MeOH,,KO;) yielded amphidinolide J
(1) (58% for 2 steps). Comparisons of our synthetic amphi-
dinolide J demonstrated that it was identical in all respects with
spectroscopic data provided for the natural subst&hce.
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